Slik fungerer 3d-skanning

3d_scanning

En 3d-skanner er et utstyr som analyserer et fysisk objekt eller et miljø for å samle inn data om form og mulige andre egenskaper som farge og tekstur. Dataene kan så benyttes for lage digitale tredimensjonale modeller.

SLIK FUNGERER DET
Når man skanner med en 3d-skanner lages en punktsky ut fra geometriske målepunkter på det skannede objektets overflate. Disse punktene kan deretter benyttes for å ekstrapolere, altså en beregning av måleverdiene, formen på objektet. Denne prosessen pleier å defineres som rekonstruksjon. Det kan også inngå fargeinformasjon i skanningsdataene. Denne er da definert ved hvert målepunkt.

I de fleste situasjoner så holder det ikke med en innskanning for å få frem en komplett modell. Det kan kreves opp imot hundre scknninger fra flere ulike vinkler for å få frem en detaljert innskanning. Disse må samles i en og samme fil.

FLERE TEKNIKKER
3d-skanning kan utføres med flere teknikker, alle har sine styrker og svakheter. Vi skal se nærmere på to av de vanligste teknikkene.

• Time of flight
3d-skannere basert på time of flight benytter laser for å måle objekter. Med prinsippet sender laseren ut en kort puls av lys og måler tiden det tar for lyset å komme tilbake. Avstanden kan bestemmes ved at vi kjenner lysets hastighet.

Fordelen med time of flight-teknikken er at de kan anvendes over store avstander. Den egner seg derfor godt for 3d-skanning av store strukturer, for eksempel hus og topografi. Ulempen er oppløsningen. Ettersom lyset ferdes i ekstremt høy hastighet er det vanskelig å nøye måle tiden det tar for lyspulsen å ferdes fra 3d-skanneren og tilbake. Oppløsningen ligger derfor på millimeternivå.

• Strukturert lys
En 3d-skanner basert på strukturert lys sender ut lys i et rutemønster mot et objekt. 3d-skanneren beregner deretter formen på objektet ut fra hvordan rutemønsteret forandres.

Fordelen med strukturert lys er hastighet og presisjon. I stedet for å skanne et punkt av gangen kan man skanne flere punkter parallellt over hele synfeltet. Teknikken gir betydelig bedre oppløsning enn time of flight, ned på mikrometernivå. Ulempen er at det er vanskelig å skanne reflekterende eller transparente overflater, der lyset ikke får noe ”feste”.

Exempel på polygonmodell.

Eksempel på polygonmodell.

DIGITALE MODELLER
Skanningsdata konverteres i de fleste tilfeller til en redigerbar modell, altså en digital fil. Det finnes flere typer modeller, avhengig av bruksområde.

• Polygonmodeller
Disse er basert på polygonoverflate (polygon mesh), der modellen konstrueres ut fra et stort antall overflater i ulike vinkler, tenk discokule. Dissa modellene er brukbare for visualiseringer og til en viss grad for CAM-arbeid. Men filene er tunge og vanskelige å redigere.

• Overflatemodeller (surface models)
Overflatemodeller er i stedet basert på et slags lappeteppe av kurvede overflater, som former selve objektet. Disse kan være basert på forskjellige metoder. En av disse heter NURBS (Non-Uniform Rational B-Spline). Denne anvender kurver og overflater for å skape myke overganger og baner mellom et antall faste punkter. Fordelen med NURBS er at den ferdige formen er oppløsningsuavhengig og kan derfor endres i størrelse så mye man vil uten at kvaliteten forverres. T-Spline er en annen metode, patentert av Autodesk. Overflatemodeller er redigerbare, men bare på overflaten, litt som en skulptur.

solidmodell

Exempel på solidmodell.

• Solide modeller
Disse er best for redigering eller konstruksjon av komponenter som skal lages. Solidmodellering er noe man kan gjøre i programmer som Solidworks, AutoCad og IronCad.

APPLIKASJONER
Skanningsdata kan anvendes for en rekke ulike anvendelsesområder, alt fra film og underholdning til industridesign og dokumentasjon av kulturhistoriske objekter.

• Reverse engineering
Dette er en metode der man tar fysiske objekter, 3d-skanner disse og arbeider videre med dem. Dataene kan være en overflatemodell eller en solidmodell. Metoden er vanlig forekommende innen produksjonsindustrien.

• Kulturarv
Kulturhistoriske objekter og arkeologiske funn er mange ganger så skjøre eller påvirkes av oksydering og UV-lys at de ikke kan eksponeres for luft eller dagslys. I visse tilfeller handler det kanskje om beinbiter som bare kan sammenføyes digitalt. Her er 3d-skanning et utmerket verktøy da det også støtter fargedata. Behøver man å få lagd en replika av et objekt kan man 3d-printe den digitale modellen.

Et svensk eksempel innen dette bruksområdet er en 3d-skanning som ble gjort av mumien Neswaiu og en gullamulett som lå skjult i hans innsvøpning. Neswaiu befinner seg på Middelhavsmuséet i Stockholm. Prosjektet ble gjennomført av Interactive Institute Swedish ICT ved Visualiseringscenter C i Norrköping, Autodesk og CMIV. Les mer om dette kundeeksempelet her.

• Medisinsk teknikk
3d-skanning innen pleie anvendes først og fremst for dentale applikasjoner og ortopedi. Ved å skanne hofteledd og skadede tenner er det mulig å konstruere erstatninger som er helt skreddersydde for patienten. Les mer om 3Shape, et dansk foretak som utvikler skannerløsninger for dentalbransjen.

• Kvalitetskontroll og inspeksjon
3d-skanning kan også benyttes for geometrisikring og kvalitetskontroll av produserte komponenter, det være seg om de er 3d-printede eller tilvirket med tradisjonell teknikk. Det forekommer alltid variasjoner i ulik utstrekning i all tilvirkning og produkter må kontrolleres, spesielt om det dreier seg om metallkomponenter. Ved å 3d-skanne en komponent og sammenlikne med den digitale originalen kan man vurdere avviksproblemer. Denne prosessen kalles vanligvis CAD Compare.

LEVERANDØRER & UTSTYR
Her er en kortere og langt fra fullstendig liste over leverandører og deres utstyr. Mindre 3d-skannere for konsumentbruk ligger på rundt 10 000 kroner, men for en proffskanner som gir høy oppløsning må du opp i et par hundretusen kroner.

3D Systems
• Geomagic Capture
• Geomagic Sense

Artec
• Artec EVA
• Artec Spider

Creaform
• Go!Scan
• HandyScan
• MetraScan

David
• Structured Light Scanner SLS-1
• Structured Light Scanner SLS-2

Fuel 3D Technologies
• Fuel 3D

GOM
• Atos Compact Scan
• Atos Core
• Atos Core
• Atos Triple Scan

LMI Technologies
• HDI Advance
• HDI 100

Makerbot
• Makerbot Digitizer

En kommentar till “Slik fungerer 3d-skanning”

Legg igjen en kommentar

Din e-postadresse vil ikke bli publisert. Obligatoriske felt er merket med *


Airbus trapper opp 3d-printing

Airbus fortsetter å ta initiativer til 3d-printing for både serieproduksjon av flydeler og for monteringsverktøy på sine fabrikker i Europa.

Publisert av: 

3d-printing fra barnsben av

Den dansk-franske Skole i København huser både en skole, barnehage og en ingeniørvirksomhet. Når man som Kim er lærer, datalog og fysiker og underviser tett på tekniker-omgivelser, er det ikke langt til tanken om å bygge en 3d-printer.

Publisert av: 

Hybridprintere kan bane vei for byggeindustrien

Et EU-finansiert prosjekt presenterer en hybridprinter for luftfarts- og byggeindustrien. – Å minske kostnadene, forbedre effektiviteten og produksjonsfleksibiliteten er kjernepunkt for å forbedre Europas industrielle konkurransedyktighet, skriver prosjektpartneren Autodesk i en pressemelding.

Publisert av: 

Selvreparerende sko

Forskere ved University of Southern California (USC) har utviklet et 3d-printet gummimateriale som har den egenskapen at det kan reparere seg selv.

Publisert av: 

Skal stoppe våpenfiler på nettet

En student ved Xenter fikk i oppdrag å designe CAD-filen som skal gjøre det vanskeligere å lokalisere våpenfiler på nettet.

Publisert av: 

3d-printede tenner får flere til å spise

Høyskolen i Halmstad tar nå forskningen på tannimplantater et skritt videre via et nytt digitalt prosjekt. Ved å anvende digital teknikk og 3d-printteknologi vil kontrollert benvekst bli billigere og lettere å tilby pasienter i nød.

Publisert av: 

Rekordstor 3d-printet motordel

Ingeniører fra Ford har sammen med RWTH Aachen Digital Additive Production Institute bygget en rekordstor motordel for en av Fords pick-up modeller: F-150 Hoonitruck.

Publisert av: 

CELLINK bevilges millonbeløp

Den svenske produsenten av bioprintere Cellink har sammen med sin partner ACTA, Academisch Centrum Tandheelkunde Amsterdam, blitt bevilget 10 millioner kroner for Eu-prosjektet FUNC, Functionalized Collagen-based bioink for bioprinting.

Publisert av: 

Tractus3D slipper ny PEEK-printer

Tractus3D er en hollandsk 3d-printerfabrikant som i de siste årene har satt fokus på storformatprintere og 3d-printere som kan håndtere høytpresterende polymer som PEEK. Nå slipper de T850P.

Publisert av: 

Sveitsergarden med 3d-printede hjelmer

Etter fem hundre år med svidde ører pga sommervarmen og vekten av to kilos metallhjelmer hvilende på hodene går Vatikanets sveitsergardister nå lysere tider i møte, takket være nye, 3d-printede hjelmer.

Publisert av: 

Bulgarsk 3d-printet ribbein i nylon

Tidligere har man printet ribben i titan, men dette har ikke vært så egnet som materiale, da det jo ikke er like bøyelig som våre naturlige. Men nå har man tatt i bruk et nylonmateriale som egner seg mye bedre.

Publisert av: 

3d-printet sin egen datamus

Mannen bak YouTube-kanalen Electronic Grenade så en video av noen som hadde modifisert et tastatur for å gjøre det om til en funksjonell datamaskin. Han fikk da en idé om å gjøre det samme, men med en datamus.

Publisert av: